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ABSTRACT 

Ihe principal aBBumptlons used by R. Kraichnan In 

formulating a theory of turbulence are reviewed, and their 

meaning is examined in the light of a mathematical model. 

A regression function is defined and used to evaluate the 

triple correlations. The  importance of the fourth order 

cumulants is discussed. The merits of the theory are 

illustrated by comparison with experimental results—in 

the case of the mathematical Todel -- of grid turbulence 

(skewness factor) and of turbulence at very large Reynolds 

number. 
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I.    INTRODUCTION 

The object of this review Is to examine the general method proposed by 

R. Kralchnan several years ago.    We will probe the nature of the assumptions. 

The numerous mathematical details will receive little attention.     ühe theory 

was first proposed in the context of MHD turbulence, where comparison with 

experiment was not possible.   The problem was then reduced to the case of 

ordinary turbulence (homogeneous, Isotropie, and incompressible), and some 

agreement was found. 

There is little doubt that Kralchnan* s general approach can be extended to 

MHD problems, to turbulent shear flows, or to plasma turbulence.    In fact, a 

whole category of problems of physics may benefit from any success in the field 

of nonlinear random problems.   For example the method may apply to nuclear 

magnetic resonance. 

The method of Kralchnan is characterized by the use of a regression function 

that describes the average effect of a small perturbation imposed on the tur- 

bulent flow.    In order to introduce this function as clearly as possible and to 

show that It can be measured, I shall refer to a model problem,    ühis problem 

is only a mathematical exercise, void of any physical reality, but easier to 

treat than the simplest case of turbulence.   The model problem has the advantage 

that it can be Integrated numerically with a large computer so that the theory 

can be compared to experimental results. 

-1- 
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II.    STATEMENT OF THE PROBLEM 

Let us start from the equations of Navier-Stokes written In the following, 

somewhat informal form: 

Ov#/dt) + E v.Ov./dx.) + (dp/8x#) = v(a v./Sx.Sx.) 

(1) 
Z Ov./dx.) - 0- 

where v(x,t) is the Eulerlan velocity and p the presBure. The density Is unity, 

v Is the viscosity, and the dots represent assorted Indices 1, 2, 3« The 

summation extends over three terms, and there Is a total of four equations. 

In order to obtain a system of ordinary nonlinear differential equations, 

instead of partial differential equations, we shall now use a Fourier trans- 

formation In the space coordinates. The Fourier transforms u(k,t) are defined 

such that 

v     "Z u.C^t) exp(lk#x, ) (2) 

The symbol k represents a wave vector, and the boundary conditions 

correspond to a periodic flow.    The Interesting part of the flow is confined 

to a cubic box of size L; therefore the lowest magnitude of the wave vector 

shall be 2TT/L.    AS we consider higher modes, the magnitude of k increases in 

steps, and many different orientations are possible.   In principle, the magni- 

tude of k could go to infinity, but we do not want to deal with wave lengths 

comparable to microscopic scales, such as the mean free path.    Thus we shall 
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specify that the magnitude of k has a maximum. As long as this maximum Is high 

enough« say ten times above the Kolmogoroff threshold. It has no significance. 
i 

The summation of Eq. (2) therefore covers a large but finite number of terms. ■ 

By entering Eq. (2) Into Eq. (l) and collecting the terms proportional to 

Ikx 
e  , we obtain the equations of Havler-Stokes In the following form: 

i 

ÖVjdO/öt - Z a1;Jh UjU«) u^k*; - vk
2^ (3) 

The coefficients a . are exactly defined from :he Navier-Stokej equations. 

Tfce two Fourier coaponents multiplied by a.- correspond to two wavenumbers k* 

and k" such that k' + k" = k. Thus the summation Is extended over all triangles 

in a wavenumber space. Perhaps one could formally Inclvde all pairs of vectors 

and decide that a. . Is zero unless the corresponding vectors luim a closed 

triangle. 

For each magnitude and orientation of k there are three such rquat.'ons, so 

that we have now a very large system of nonlinear ordinary differential 

equations. The continuity equation is Implicit. 

I will now recast this system in a form «hieb is more appropriate for a 

review. Qie new form will also be more general and will deal only with real 

quantities. Indeed, every u (k,t) and every a . is complex. Beginning with 

the lowest magnitude of k and a first orientation, we define 

 ■■—    - - 
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^(k^t) - r^t) + ir2(t) 

i^C^t) - r3(t) + iTk{t) 

^(^t) - F5(t) + ir6(t) 

m 

Proceeding to the next orientation or magnitude of k, we write 

u^k^t) = rT(t) + li^t) 

^(^t) - P9(t) * ir10(t) 

^(^t) - F^t) + IF^t) 

(5) 

and so on down the list of wavenunbers.    The last expression is 

u fk     ,t) » + iF„ (6) 

This defines the real quantities F. to F_ Where K Is a very large number. 

For the simplest case of turbulence IT would be of the order of 10 . Each F. 

varies with the time. Note that there are bix F's for each wavenumber, so 

that the large wavenumbers correspond to functions of large indices.. 

The equations of Navier and Stokes can be written in terms of the new 

functions as follows: 

dF^dt - z eay/k + E b^ (7) 

-5- 



where the coefficients cijk are purely real and related to the coefficients 

aijk of the previous formulation. The coeffici€nts bij come from the viscous 

terms. These equations are of a very general form, and they encompass a wide 

assortment of problems. Shear flow turbulence, MHD turbulence, or plasma 

turbulence, which do not contain nonlinear terms worse than bilinear, can be 

reduced by Fourier transformation to a system of equations of the form of 

Eq. (7). 

If the terms in cijk are negligible, we have a classic linear problem. For 

small values of the nonlinear term, a method of p~rturbation can probably render 

some services. In turbulence, the nonlinear terms become dominant, and a funda-

mentally different situation appears. In fact, the terms in ·bij either become 

negligible, or add only some minor complications to the general strategy. For 

simplicity, we shall now drop these linear terms. They could be carried along 

in a detailed treatment. 

The coefficients cijk grow with the first indices. Indeed, the basic 

equations have terms such as v {ov lox ) that lead to coefficients proportional 
0 d 0 

to the wavenumbers. Thus the coefficients having large first indices will have 

large values, since they correspond to large wavenumbers. 

It follows that a function such as F865 fluctuates faster than a function 

such as F
32

i this introduces important statistical differences between the 

various functions. 

The problem is to determine the statistical properties of the Fi, starting 

from the set of coefficients cijk generated by the equations of Navier-Stokes, 

and from some suitable assortment of initial conditions. 

-6-



III. A MATHEMATICAL MODEL 

In order to examine the reasoning of Kraichnan with maximum clarity, I 

shall occasionally refer to a model problem, which is not related to any 

particular flow but is simply defined by Eq. (7) with a convenient choice of 
1 

the coefficients cijk" For the model, these coefficients are simply taken 

fro~ a collection of random numbers having a root mean square of unity and an 

average of zero. The initial conditions, that is, the values of all the Fi at 

t = 0, are also chosen at random. 

If the number of functions F is less than 100 or so, the problem can be 

integrated numerically with sufficient accuracy at an acceptable cost. I 

have found that statistical reproducibility occurs already when N is larger 

than 20, and satisfactory numerical experiments can be carried out with N = 48. 

This is a great relief from turbulent cases and it is principally due to the 

fact that all functions Fi have s~milar behavior because all coefficients have 

the same order of magnitude. 

The state of the flow, or that of the model, is speci f i ed at any t ime by 

theN functions Fi. This corresponds to a point in a space of N dimensions. 

The kinetic energy of the flow is defined as E = l:FiFi, and it follows from 

Eq. {7) that E is a constant, since the viscous terms have been discarded. In 

the case of the model, it is easy to adjust the coefficients cijk so that E is 

also an invariant. Then, as the time increases, the representative point stays 

on the surface of the ~rsphere, in the N-dimensional space. 

Starting from some initial conditions at t = 0, we can imagine the tra-

jectory, perhaps like the solid line Shown in Fig. 1. 

-1-
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Figure 1. Solution of a Turbulent Energy 
Preserving Problem in a Multi- 

dimensional Space 

In Fig. 2 w see the result of a numerical integration of the model with 

N » 1»6. A particular function F^ displays random fluctuations. The other kf 

functions have a statistically similar behavior. 

TIME 

Figure 2.    Behavior of a Component in a Numerical 
Experiment 
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IV. THE AUTOCORRELATION FUNCTION 

The physicist confronted with the signal of Fig. 2 immediately realizes 

the futility of a theory giving every wiggle of the solution. Some statistical 

reduction is necessary, and the first question is, "What is the power spectrum?" 

The fluid dynamicist will ask the equivalent question, "Vlhat is the auto- 

correlation?" 

This function is defined as 

H(T) - P(t) P(t + T) (8) 

In the case of turbulence, this function varies with the index 1 and with 

the corresponding wavemudber. This function H(k,T) could be measured, but this 
2 

has not been done. Perhaps the results of Pavre et al. could furnish 

such information. 

In the case of the model, H is independent of the index and the computer can 

easily determine H(T). The results give the bell-shaped curve shown in Pig. 3. 

—   ■  
 _ 
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T 

Figure 3· Autocorrelation Function o! the Model Problem 
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V. EQUATION FOR THE AUTOCORRELATION FUNCTION 

The theoretician Is now challenged to present an expression for H(T). His 

first step will be to form an equation for H. For this purpose we denote 

Fft') as F'* After multiplying the basic Eq. (7) by F* and averaging, we 

obtain 

-(dH/dT) - I F^/dt) - I ciJk PJFJFJ (9) 

On the right hand side, we have a large number of terms, each one a triple 

correlation.   Since the left hand side Is of the order of magnitude of unity. 

In some appropriate units of time, each triple correlation must be fairly small. 

Thus the various components F. are almost, but not quite. Independent.   The 

classical method would now lead to equations for the triple correlations. In 

terms of quadruple correlations, followed by some drastic assumptions on the 
3 

quadruple correlations.     Kralchnan attempts to directly evaluate the triple 

correlations by means of a regression function.    We shall now follow this new 

approach. 

•11. 
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Figure k.   Effect of a Small Perturbation 
on a Turbulent Solution 

Figure 5*    Effect of a Small Perturbation on a Component of the 
Numerical Model 
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VI. THE REGRESSION FUNCTION 

Let us come back to the model and examine the stability of the solution* 

After obtaining the solution for a given set of coefficients and a given set 

of initial conditions, let us reset the conputer and repeat the numerical 

integration. Since every element of the computer is fully controlled, the 

integration is completely reproducible. Even the errors (truncation, finite 

step size, etc.) occur in exactly the same fashion. 

At time t. we can stop the computer and modify one of the k8 functions. 

Let us say that we Increase F- by c ■ 0.01. (The root mean square of F. Is 

unity). The computer Is then instructed to resume integration. The effect 

of the disturbance is illustrated in Fig. k.   At time t , the trajectory makes 

a sharp step in the direction of the fifth axis; thereafter it follows the 

undisturbed trajectory for a while, gradually drifting away. 

After a long time, the perturbed solution is far away from the undisturbed 

solution, somewhere on the hypersphere. All correlation between the two 

trajectories has been lost. The two functions F. and F.  can be plotted, OB 

in Fig. 5» nie difference Af " F-  - F,. can be divided by c, so that it Jumps 

from zero to unity at t ■ t.. 

After a long time, this normalized difference becomes very large, of the 

order of l/c, but the probability that it will be positive is equal to the 

probability that it will be negative. 

•13- 
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Figure 6. Normalized Effect of a Small Perturbation 
for Different Initial Conditions 

(Numerical Model) 

Figure 7* Regression Function of the Model Problem 
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Once again, the situation calls for a statistical reduction* Let us 

repeat the procedure, changing only the Initial conditions at t ■ 0. For each 

set of initial conditions, ve have another normalized difference. Jumping from 

zero to unity at t. and eventually becoming very large. 

A family of such results is shown in Fig. 6. Cleorly, the behavior of 

the difference can be predicted for some time after t., but the long-range 

performance is completely uncertain. 

Übe computer can be programmed to determine the average of the family of 

curves shown in Fig. 6. This average will be noted as G(T) with r ■ t - tf. 

For T<0, G ■ 0 (see ?ig. 7). ühls is the regression function, and it 

indicates the probable effect of a small pulse applied at T ■ 0. Hie energy 

of the pulse is gradually distributed among all the N functions F. Thus, G 

describes not a dissipation of energy, but a loss of information. 

At t ■ t., the probability distribution of F, and of any other component is 

Gaussian. Inmediately after the perturbation, the probability distribution of 

Fg.  is a Gaussian, shifted by the amount c. In time, this probability will 

return to normal; the function G describes this regression process. 

In order to be sure that the individual differences indeed become very 

large, in absolute value, I have asked the computer to determine the function K 

defined as 

-,» 
K - AF^ /e (10) 

-15- 
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N-24 

N-48 

Ns36 

Figure 8. Functions G and K for Models 
of Increasing Intricacy 
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Some results are shown In Fig. 6, far various values of 5« The horizontal 

scales are suitably changed so that the functions G all look alike« übe 

functions K indeed grow and eventually level off at l/e. When G Is almost zero, 

the growth of K Is exponential. 

As N Increases, note that K follows G for a longer tine before taking off. 

Tbls means that, as the system becomes more Intricate, the actual effect of a ■ 

pulse can be predicted with increasing accuracy. Indeed, the gap between E 

and G Is a measure of the statistical variations between differences AF. 

23 
For N ■ 10 , K may practically vanish before the final ascension. Such 

systems would have a "bydrodynamical* response to perturbations! 

-17- 
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VII. APPLICAnON OF THE REGRESSION FUNCTION 

Let us now suppose that the perturbation is not concentrated on one 

Instant at tine t-, but Is continuously applied to the system. 

If t(t) Is a small fluctuating force, generated externally, we have 

cUiydt - ^ C5JkVk
+* (11) 

If we had a linear system, the effect of the external force could be 

superposed on an ordinary solution, leading to a result such as 

Pc-?(t) +J G(t-s) ir(s) ds (12) 

where 5 denotes a solution In the absence of external force. For a linear 

system, G Is simply the effect of a single pulse, without need for a statistical 

averaging or a limitation to small amplitudes. 

With a nonlinear system of sufficient intricacy, we can perhaps write an 

equation of the form of Eq. 12, except that 7 should become some function 

closely related to a solution of the undisturbed equations. 

Essentially, in an expression such as Eq. (12), the Integral contains those 

effects of t Which can be predicted by means of the regression function, while 

the term in 7 contains the effect of the initial conditions plus those cob- 

sequences of the forcing function which cannot be predicted. Thus, Eq. (12) 

Is not very useful if we look for a formal solution of the problem. 

-19- 
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However, Eq. (12) becooes valuable «hen we form the correlation ♦(t,)Pc 

between the forcing function and the solution of the nonlinear problem. 

From Eq« (12) we obtain 

f'F - ♦'? + J* 0(t-B) f(t-8) ds (13) 

where Y ■ t 't  Is the autocorrelation of the forcing function,   übe integral Is 

a simple operation on two bell-shaped functions«    Ihe correlation f'?   Is far 

more difficult to evaluate«   In fact. It would be Inposslble to continue the 

theory If we could not dispose of this term!   Essentially, since the predictable 

effects of f are given by the Integral'^e'ht^t Is reasonable to assume that 

t' ? Is negligible«   We shall do so« 

—) 

-20- 
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VIII. THE TRIFLE CORRELATIONS 

Ihe previous section can now be used to express the triple correlations. 

Consider, for example, the equation giving F and assume that, among the many 

terms of the right hand side, we find one proportional to the product F-F^. 
i r 

What is the correlation F^FJU 7 By- pulling one term outside of the sumnation 

and indicating its presence as f ■ c5_2 F-F- we have 

"^ ■ I  C5JkF/k + ♦ W 
ONCTtHM kit« 

The argument of the previous section can be used, treating one term as a small 

perturbation applied in the presence of almost all the other interactions. 

It leads to the following result; 

II  . . ,.* .     Tf 
y^Ct) - c572 / 0(t-s)F7F2 F7(s) F2(s) ds (15) 

This approximation is valid if the functions F7,F2 and F,- are independent, 

except for the linkage by the coefficient c^. Additional terms must be 

entered, proportional to similar effects caused by c _ and c _ . Such terms 

are labelled "direct interactions" because they Involve only the three 

functions forming the triple correlation. There are also many possibilities 

for indirect Interactions, Involving other functions. For exaiqple, a term 

F-Feg could contribute to the generation of F.» and a term FJ?- could 

-21- 
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contribute to the generation of P300 • Nw* ** the product ^^jac^viR a|I,Pears ^ 

the equation for dP-/dt, an approadmate analysis shows that the product 

FgF-QF-F affects F.« Ihus, through the action of P^, we have another linkage. 

Kraichnan assumes that the direct interactions are the dominant ones« Ihls 

amounts to saying that the various Fourier components are correlated three-by- 

three, but not in more numerous groups. 

.22. 
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IX. THE EQUATION FOR H 

As shown In Eq. (15), a triple correlation can be expressed by an Integral 

over a function 0 and a quadruple correlation* Let us use the drastic assumption 

of MllliontBchikov to reduce the quadruple correlation to a product of two double 

correlations« Later on, In Section HI, ve shall comment on this crucial step 

and examine the various kinds of quadruple correlations to offer some Justifi- 

cation* 

Triple correlations can now be given In terms of doubles. Thus the road 

started at Eq* (9) leads to an expression of the type: 

dH/dt ■ c*.*c*.*J G(T-8) H(S) H(S) ds (16) 

This Is the first of two master equations established by Kralchnan* If G 

Is known, Eq* (16) gives H* 

-23- 
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X.    THE EQUATION FOR G 

Hie application of a perturbation c on the function F- produces the 

difference AF,  seen In Fig. 6.   It also causes a disturbance In every other 

component of the motion, and we can define N-l differences 6F .    While AF Is 
o 

discontinuous at t » t., the quantities 6F. are continuous but each shows a 

discontinuity In some derivative. Thus, If F- Is directly modified by F,., the 

derivative of 6FQ will Jump. If F. Is directly arffected by Fq but not by F,.^ 

the second derivative of 6F will Jump, etc. 

The averaged value of any function 6F Is zero (j ^ 5), since the pertur- 
d 

batlons are "modulated" by various functions F.. 

Immediately after the perturbation, and during the decay of G, the difference 

AF- and the many other differences 6F are small. Thus the basic equations can 

be linearized and we write: 

d/dt AF.. - 4 c^FjF, (17) 

^^J-I^P^P^I^W (18) 

In order to determine G " AF,./«, we must eliminate the quantities 6F.. The 

equations for 6F show that every one is a response of the system to a per- 
Ü 

turbation AF. F • The predictable part of this response is 

-25- 
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After substituting Eq. (19) In Eq. (17) and averaging, we obtain the equation 

for G 

dO/dT - 2^ C...C... J 0(T-8) (K«) H(8) ds (20) 

This is the second master equation.   Together with Eq. (16)   it forms a 

closed system of equations that, in general, gives H(k,T) and G(k,T). 

The theory is now complete.   It remains to integrate a system of integro- 

differential equations giving a set of bell-shaped functions.   This is easy for 

the model, but still a difficult task for any turbulent flow. 

-26- 
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XI« ÜHBOBY FOR IHE MDDEL 

In the case of the mathematical model, the second master equation reduces 

to a form Identical with the first equation, so that one finds G - H, provided 

that T Is positive« ühus the single equation Is 

d^dr ■ -c«««c,«a J* H(T-S) ^(S) ds 
0 

(21) 

It can be Integrated easily by numerical techniques, and the results are 

shown In Fig« 9« ^he solid curve gives the experimental results, the dashes 

and dots show the solution of Eq« 21 from the theory of Kralchnan« 

The dots show the experimental values for a« Thtt discrepancies between 

theory and experiments are probably due to numerical errors In the Integration 

of Eq« 21 or to limited averaging samples, or to the fact that the theory applies 

for N ■ •, while the experiments apply to N • 48. 

In order to compare the new theory with older methods, we can form an 

equation for triple correlations In terms of quadruple correlations and use the 

drastic reduction to doubles« übe result is shown In Fig« 9 by the thin curve, 

which plunges to - **. Ihus, the new theory marks a clear progress« 

•27- 
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H (THEORY) 

Heavy solid line: Prom numerical experiments. 
Heavy broken line: From Ifralchnan's theory, Eq.» (21), 
Thin solid line: From discard of cumulants. 
Ihln tjroken line: Regression function, from numerical work. 

Figure 9«    Autocorrelation Pimctions 
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XII.    ROLE OF THE QUADRUPLE CUMULANTS 

In order to examine In detail the difference between old and new theories, 

we shall start by establishing an exact relation, a refreshing episode. 

Multiplying the basic Eq. (7) taken at tine t by the same equation taken at 

time t* and averaging leads to 

(dF'1/dt)(dF1/dt) - SciJkZcipqP.FiPpF5 (22) 

If the process is statistically stationary In time, the first integration 

gives 

dH/dr -IICiJkCipqJFi P»F P   ds kp q (23) 

Note the double summation.    The right hand side of Eq. (23) can be regarded 

as a product between a matrix c    .  c.      and a matrix formed by various quadruple ijK   ipq 

correlations. 

Let us now approximate these quadruple correlations by products of doubles. 

Since P*F. vanishes unless 1 ■ J, the only terms of Eq. (23) that do not 

disappear are those found along certain diagonals of a matrix. 

Thus the exact Eq. (23) reduces to an expression typical of these theories 

^ T 
dH/dT ■ - ) c.,.c... J HH ds (24) 
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Note that the summation has been reduced to a single duo:. If there is 

a small error in the evaluation of each quadruple correlation along the 

diagonals, it will have a small effect on the result. However, if there Is 

a small error on each quadruple correlation away from the diagonals, the very 

large multitude of these terms may produce significant errors, ühus, it is the 

neglect of the cumulants off the diagonals that is likely to cause trouble. 

Ohe theory of Kraichnan leads to Eq. (l6), which reduces to Eq. (2^) If we 

take G ■ 1. Thus, the presence of the regression function in the final results 

is significant. Since G represents some effects of the complicated coupling 

between the modes, it perhaps accounts for the off-diagonal terms. How well 

is not known. 

Finally, if we return to Eq. (l6), we remember that Kraichnan uses the 

simplified form for the quadruple correlations at some stage of the argument. 

However, this reduction Involves only special correlations along the diagonals 

and does not abridge a double sum to a single sum. Thus, it seems that the 

cumulants can be neglected only along the diagonals. 
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nil.    APPLICATION TO GRID TURBULENCE 

The turbulence produced by a grid placed in a wind tunnel is generally 

characterized by a low Reynolds number.   With a mesh M   and a free stream U . 

'ire shall refer either to 1^ ■ U M/v, of the order of 15,000, or to 

R.« (0.1R^)Z, varying between 20 and 70. 

nie energy spectrum Is too narrow to display the Kolraogoroff range. 

Kralchnan applied his theory In the case R.  a Uo, assuming a convenient form 

for the shape of the spectrum at t » 0.   The turbulence decays, so that the 

functions H and G vary slowly with the time.   The successive spectra are shown 

in Fig. 10.   Note the decay of the energy and the production of small vortices. 

The decay proceeds according to a similarity lav. 

For this flow, Kralchnan determined the skevness factor S defined as 

s - (av^)3/ [(av^x/j3. /e 
(25) 

«here v. and x. are along the mean flow direction. Note that S is nondimensional« 

Ibis factor plays an essential role in the study of nonlinear turbulent processes. 

It is related to short range triple correlations and it is also proportional to 

the rate of production of the mean square vcrticity, and to a rate-of-deform- 
5 

atlon parameter.      Certain theories are baaed on an expression for the 
6 

eddy viscosity,   which Introduces one nondimensional universal constant 

-31- 

■ 

■ 
■ 

. 

^ — 



•^■—»^-^ ^r^mrm^tmmmmm^^ß mmmm^rmrwmmmmmm 

I 
— 

i 

Figure 10. Decay of the Energy Spectrum 
(According to Theory for R «1*0) 
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that must be matched with experimental data. This constant Is none but the 

factor S, in a special form. 

In Kraichnan's treatment it Is necessary, at t « 0, to specify the triple 

correlations; he started from provisions for zero triple correlations, which 

corresponds to S ■ 0 in Fig. 11. The rapid Initial growth of S is compatible 
7 

with previous work of Froudman and Reid, which used the drastic treatment of 

quadruple correlations. However, the new theory finds that S rapidly levels 

off and retains the value S B 0*k during the decay. Ibis is in excellent 

agreement with the experiments of Townsend and others. 

Note that Kralchnan does not adjust any constant in his determination of S. 

He also treats several similar cases, always with the limit S -» 0,^, A kine- 
5 

matic argument shows that S cannot exceed a value near 0.8. 
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Figure 11.    Skevness Factor 
(According to Kralchnan for R^ - IfO.    The Value Factor O.h Agrees 

with Many Experiments.) 
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XIV. THE KOLMOGOROPF SPECTRUM 

In the atmosphere, the ocean, or a sufficiently large apparatus, the 

-5/3 
spectrum of turbulence shows a portion falling as k ' . We shall consider 

the case of stationary turbulence, so that we must Imagine some large scale 

mechanism furnishing the energy- necessary to maintain the flow, despite the 

energy- dissipation c. 

In a first attempt to apply his theory, Kralchnan met with some difficulties. 

In the limit of very large Reynolds numbers (say R. ■ 300), the equation for 

0(k,T) takes the form of a product 

dO(k,T)/dT- OA(k«,ltr)>l Jrtk,T,8) ds| (26) 

where the integration in s contains only a function of T, k, and s. The sum, 

however, contains a contribution from each triangle in the wavenumber space 

such that k* + k" s k. If either k* or k" becomes small er or comparable to 

the wave number K at which the spectrum is maximum, the behavior of A requires 

special attention. As a result, the final expression for the energy spectrum 

takes the form 

E(k) - .2/3 [(a/k5^) + (b/k
1^/2] (27) 

* 
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Figure 12.   Autocorrelation Functions Produced by a Simple Shear Wave 
Transported at Various Uniform Speeds 

(The Averaged Effect Is Shovn by the Heavy Line) 
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übe term proportional to a comes from values of k' and k" larger than K. The 

term proportional to b comes from the small values of k* or k", that Is, from 

the large scale vortices. 

It is clear that if k is large, the above expression falls as k J/ . If the 

singular behavior did not occur, b would vanish and the spectrum would fall as 

expected. 

This situation prompted Kraichnan to a reexamination of the first form of 

his theory. He found that the argument that I have outlined in the previous 

pages suffers from a serious defect. It can be corrected if the correlations 

are defined in a sort of local frame of reference moving with the local fluid 

velocity. The papers dealing with the revised theory are easily identified: 

the title always contains the name of Lagrange. They are not easily read. 

To give you an idea of the nature of the difficulty, I shall consider a 

situation so simple that there are only two modes. First let us imagine a 

fluid at rest, animated by a single stationary shear wave such that 

v(x,y,z,t) ■ sin ax. 

Clearly, the correlation v^x,t} v^,t + r)  is independent of T since the 

shear wave is stationary. Let us now displace the fluid with a supplementary 

velocity U, which is constant in space and in time. We assume that the shear 

wave is transported with the velocity U. 

Then the velocity observed at a fixed point varies in time and the time 

correlation will fluctuate. For a particular value of U, the correlation will 

be given by one of the thin lines shown in Fig. 12. If we change the magnitude 

of the velocity U, we get some other oscillating correlation function; only the 
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period varies. 

An average over an ensemble of different velocities U or over time. If U 

changes slowly, will yield the bell-shaped correlation function shown by the 

thick line in Pig. 12. 

Thne,  the transport of a single shear wave by an assortment of large scale 

motions can produce a certain kind of correlation. However, one should not 

expect that the theory of Kraichnan will succeed In this case. Ihe theory 

must be applied only to those correlations that are not produced by random 

translations of the same shear wave. 

It is too early to say that the modification proposed by Kraichnan Is the 

only possible one, but it is not surprising that, once the treatment for low 

k* and k" is revised, the spectrum falls as k"5' . The Kolmogoroff law Is 

already in the Eulerian theory. It must also be noted that the Lagranglan 

theory gives a numerical value of the universal spectral constant ä that is 

in good agreement with experiments. 

Turbulence at high Reynolds numbers raises many interesting questions. 

What is the skewness? It has not yet been measured experimentally. One could 

also take the signal proportional to a velocity fluctuation and pass it through 

a simple low-pass filter. The skewness of the filtered velocity could be 

determined and perhaps compared with theoretical results. 
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XV.    CRITICISM OF THE THEORY AND COMMENTS 

So far, the theory has not predicted many remarkable properties of tur- 

bulent flows, except In the field of MHD turbulence, where the confirmation 

may take a long time. 

In ordinary turbulence, measurements of H(k,T) would be Interesting, 

since a comparison would be possible.   A special effort should be made, perhaps, 

to specify the odd correlations of order higher than three.   If the direct 

Interaction approximation Is valid, the triple correlations should determine 

those of order five, seven, etc.   nils would explain the results of Frenkiel 
8 

and Klebanoff. 

Some scientists have not fully accepted the cascade theory and Richardson's 

poetry.   In electronics-engineering, the energy supplied at 6o cps Is often 

converted to much higher frequencies, say megacycles, without any Intermediate 

oscillations.   The spectrum has essentially two separate peaks.    If the high 

frequency signal Is Intensely modulated, the spectrum could fill the entire 

range.   Thus, one can perhaps conceive other theories of turbulence, with 

direct links between the very large and the very small eddies.    Intermittency 

might perhaps play an essential role.    So far these are only speculations, 

and the theory of Kralchnan still stands as the best that we have. 

-39- 

■  

«si- 
      — 



111  "■'■  ■   i—^^^l^^—WWWi 

REFERENCES 

1. R. Betchov, "introduction to the Kralchnan theory," Proc. Symp, 

Dynamics Fluids and Plasmas, College Park, Maryland, October 1965 

(Academic Press, New York, to be published), eds. A. J. Faller 

and S. I. Pal. 

2. A. J. Favre, J. J. Gavlglio, and R. J. Dumas, "Space-time double 

correlations and spectra in a turbulent boundary layer," 

J. Fluid Mech. 2 (U), 313-3^ (J^ne 1957); also "Further space- 

time correlations of velocity in a turbulent boundary layer," 

J. Fluid Mech. ^ (4), 3^-356 (January 1958). 

3*   M. D. Mlllionshchikov, "On the theory of homogeneous Isotropie 

turbulence," Congrt. Rend. Acad. Sei. URSS ^2, 615-635 (19^1). 

U.   0. K. Batchelor, ühe Theory of Homogeneous Turbulence (Cambridge 

University Press, New York, 1953). 

5. R. Betchov, "ine'iuality concerning production of vorticity in 

Isotropie turbulence," J. Fluid Mech. 1 (5), 1+97-50U 

(November 1965). 

6. W. Heisenberg, "On the statistical theory of turbulence," Z. Phys. 

12U (7-12), 628-657 (19^8). 

7. I. Proudraan and W. H. Reld, "On the decay of a normally distributed 

and homogeneous turbulent velocity field," Jbll. Trans. Roy. Soc. 

London, Ser. A: 2Vr, 163-189 (195^-1955). 

.'41- 



8.   F. N. Frenklel and P. S. Klebanoff, "Hlgber-order asymmetries in 

turbulent flow," Cowpt.  Rend. 260 (23), 603O-6032 (June 1965). 

1 

-te- 



■■■-     »"^p 

ANNOTATED BIBLIOGRAPHY 

R. H. ICraichnan, "Lagi-anglan-History Closure Approximation for Turbulence," 

Phys. Fluids 8 (10, 575-598 (April 1965). 

Difficult paper, leading to Kolmogoroff's spectrum. 

, "Preliminary Calculation of the Kolmogorov Turbulence 

Spectrum," Phys. Fluids 8 (5), 995-997 (May 1965). 

This short note leads to -5/3 law by use of Lagranglan effects. 

 , "Inertial-Range Spectrum of Hydromagnetic Turbulence," 

Phys. Fluids 8 (7), 1385-1387 (July 1965). 

Note on MHD effects. 

, "Approximations for Steady-State Isotropie Turbulence," 

Phys. Fluids 7 (8), 1163-1168 (August 196h). 

Uses functions of wave number and frequency Instead of wave 

number and time. Relates to theory proposed by Edwards. 

 , "Decay of Isotropie Turbulence in the Direct-Interaction 

Approximation," Phys. Fluids 7 (7), 1030-10lf8 (July 1900. 

Gives numerical results for low Reynolds number (grid 

turbulence); spectra, skewness, siailarlty, dissipation, 

transfer. Also describes machine procedure. 

See Erratum, 8 (l), 210'(January 1965). 

 , "Dlagonalizing Approximation for Inhomogeneous Turbulence," 

Phys. Fluids 7 (8), 1169-1177 (August 1964). 

,  ^tension of theory to shear flows and thermally driven 

turbulence. 

-43- 

J 
' 

— 



 _ ■ ■        ■ ■ ^p 

.■■■ * 

, "Direct-Interaction Approximation for Shear and Thermally- 

Driven Turbulence,11 Phys. Fluids 7 (7), 10W-1062 (July 19Ä). 

See Erratum, 8 (3), 552 (March 1965). 

1 "Kolmogorov's Hypotheses and Eulerlan Turbulence Hieoiy,1 

Phys. Fluids 7 (ll), 1723-173^ (November 1964). 

Argument that Eulerlan approach is not suitable for deriving 

Kolmogorov's results. 

 , "Mixed Lagrangian-Eulerian Approach to Turbulent Dispersion," 

Phys. Fluids 7 (10), 1717-1719 (October 19Ä). 

Short note. 

 , "Relation between Lagrangian and Eulerlan Correlation Times 

of a Turbulent Velocity Field," Phys. Fluids 7 (l), 142-1U3 

(January 196^). 

Suggests that Lagrangian correlation times should be shorter 

than Eulerlan correlation times. 

 , "Direct-Interaction Approximation for a System of Several 

Interacting Simple Shear Waves," Phys. Fluids 6, (ll), I603-I609 

(November 1963). 

A model shows that direct-interaction is better than quasi- 

normality, with three and five shear waves. 

 , "Turbulent Thermal Convection at Arbitrary Prandtl Number," 

Phys. Fluldp Uli), 1374-1389. 

.44- 

,:.'>.■.., :.'■../''Th4-:'^lr   4^%^/if'$-;-;-    -i-C' 
-   ■ 



v 

and E. A. Spiegel, "Model for Energy Transfer In Isotropie 

Turbulence/ Phys. Fluids 3 (5), 583-588 (May 1962). 

1 "Dynamics of Nonlinear Stochastic Systems," J. Math. Fhys. 

2 (l), 12k-lk8 (January-February I96I). 

 , "Comments on 'Space-Time Correlations In Stationary 

Isotropie Turbulence,'" Phys. Fluids 2 (3), 33^ (May-June 1959). 

 , "ihe Structure of Isotropie Turbulence at Very High 

Reynolds Numbers," J. Fluid Mech. 5 (h), ^97-5^3 (May 1959). 

Glils is a detailed paper, containing essential theoretical 

results. 

, "Higher Order Interactions In Homogeneous Turbulence Eieory," 

Phys. Fluids 1 (^), 358-359 (Jüly-August 1958). 

A brief note on indirect interactions. 

 , "irreversible Statistical Mechanics of Incompressible Hydro- 

magnetic Turbulence," Phys. Rev. 109 (5)> 1^+07-1^2 (March 1, 1958). 

Gives discussion of 0 equation. 

-45- 

—-—  — 

-—*"- —'- - ■- - 



■ 11 

UNCLASSIFIED 
Security ClaMification 

DOCUMENT CONTROL DATA • R&D 
(laatrlly elmftllemtlcn el lltlt, body ol »btlncl and tnd»*lnt anneltllon mutl t> mnttnd whan tfi» ennll npotl ii clfllttd) 

t   OmaiNATIN 0 ACTI«/|TV (Coipoff author; 

Aerospace Corporation 
El Segundo, California 

2«. ncponr ticuniTv c LAUIFICATION 

Unclassified 
ab OROUP 

l. niPomr TITLI 

A Review of Kralchnan's Theory of Turbulence 

4   OESCNIPTIVE NOTES (Typ» ol npotl and Incluilv dalom) 

I   AUTHORCS; (Lou nam«. lint mm; Inlllol) 

Betchov, Robert 

•   REPOdT DATE 

May 1967 
• «.   CONTRACT  ON OHANT NO. 

AF Oii(695)-1001 
b.   PROJICT NO. 

7a.   TOTAL NO.  OF   FAOCt ß 7b.  NO. OF «IF» 

7 
«fs; 

TR-100l(9220-0U)-2 

• b. OTHIR RCFORT NOfSJ (Any olhot numbon thai may b» ata/anaef 
A/a npotl) 

10. A VA IL ABILITY/LIMITATION NOTICES 

SSD-TR-67-7O 

mmmmmmm. 

II. SUPPLEMENTARY NOTES U   SP0NI0P1N0 MILITARY ACTIVITY 

Space Systems Division 
Air Force Systems Command 
Los Angeles, California 

II   ABSTRACT 

Thp principal assumptions used by R, Kraichnan In formulating a theory 
of turbulence are reviewed, and their meaning is examined in the light of a 
mathematical model.    A regression function is defined and used to evaluate the 
triple correlations.    The importance of the fourth order cumulants is discussed. 
The merits of the theory are Illustrated by comparison with experimental 
results — in the case of the mathematical model — of grid turbulence (skewness 
factor) and of turbulence at very large Reynolds number. 

DO   F0RM    U78 
(FACSIMILE) 

UNCLASSIFIED 

Security Classification 

MM aMi 

■ 

■    ■   

• # 



"W M^ 

V 

UMCIA88IFIKD 
Stcyrity ClMilHcrtiow 

i« RIV «OROI 

Turbulence 
Nonlinear Equations 
Statistical Mechanics 
Numerical Experiments 
Plasma Turbulence 

Abstract (Continued) 

UNCiASSIPIKD 
Security Clattificattoo 

  

■' -'       -"■- - 

♦   * 


